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ABSTRACT

Due to easy re-stacking, low yield of few-layered MXenes (f-MXenes), the applications of MXenes are mainly restricted in multi-
layered MXenes (m-MXenes) state. Although f-MXenes can be prepared from m-MXenes, after exfoliation process, a mass of
sediments which are still essentially compact MXenes are usually directly discarded, leading to low utilization of raw m-MXenes.
Herein, a classified preparation strategy is adopted to exploit the raw m-MXenes and traditional MXenes sediments, taking multi-
layered Ti;C,T, MXene as an example. Via rational delamination and subsequent treatment to Ti;C,T, sediments, we succeed in
achieving classified and large-scale preparation of various Ti;C,T, MXene derivatives, including few-layered TizC,T, (f-TizC,T,)
powders, f-TizC,T, films, and Ti;C,T, MXene-derived nanowires with heterostructure of potassium titanate and Ti;C,T,. We
demonstrate the necessity of “step-by-step delamination” towards traditional Ti;C,T, sediments to improve the yield of f-TizC,T,
from 15% to 72%; the feasibility of “solution-phase flocculation (SPF)” to fundamentally solve the re-stacking phenomenon, and
oxidation degradation issues of f-Ti;C,T, during storage; as well as the convenience of SPF to deal with time-consuming issues
of fabricating Ti;C,T, films. What's more, alkali-heat treatment of final Ti;C,T, sediments turns waste into treasure of Ti;C,T,-
derived nanowires, leading to 100% utilization of raw Ti;C,T,. The content of one-dimensional (1D) nanowires in the hybrids can
be adjusted by controlling alkalization time. The 3D architecture heterostructure composed of 1D nanowires and 2D nanosheets
exhibits gorgeous application potential. This work can expand preparation and application of various MXenes derivatives,
promoting process of various MXenes.
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It is well known that the number of layers of 2D materials has
great impact on its fundamental properties, and further affects its
final functional performance. The thinner the 2D materials, the
better the final functional performance. Therefore, the preparation
and application of few-layered or single-layered MXenes (f-
MXenes, s-MXenes) is a research hotspot. However, f-MXenes
and s-MXenes are faced with problems of easy re-stacking [28],

1 Introduction

As an emerging family of two-dimensional materials, transition
metal carbonitrides, derived from MAX phase [1-3], MXenes
have accumulated tremendous interests [4-6]. The generic
formula of MXenes can be denoted as M,,,, X, T,, where M, X, and
T, represent transition metals, C, and/or N, terminated functional

groups of —O, —OH, —F, etc. respectively [7, 8]. A lot of researches
have proved that MXenes display excellent figures of merit in
various fields, involving energy storage [9, 10], catalysis [11,12],
electromagnetic shielding [13-15], and so on (Fig.S1 in the
Electronic Supplementary Material (ESM)) [16, 17]. In particular,
the variety in composition, the rich surface chemistry, and large
interlayer spacing of MXenes make MXenes distinguished among
two-dimensional (2D) materials [18]. Since discovered in 2011,
many works closely focus on the study of fundamental
preparation-structure-function ~ correlation, which is highly
significant to the development of MXenes [19-22]. Among
MXenes family [23,24], Ti;C,T,, usually prepared from Ti;AlC,
MAX with various etching methods, has been intensively studied
due to its merits of ultra-high conductivity (~ 15,000 S/cm),
excellent mechanical strength, and good energy storage
characteristics [25-27].

together with low yield about 15% and large amount of sediments
wastes [29, 30]. As result, a considerable part of the reports about
MXenes were blocked at multi-layered MXenes (m-MXenes) state
[31]. In recent years, there have been some reports about f-
MXenes, which suppress re-stacking phenomenon with assistance
of additional components, such as carbon nanotube (CNT),
graphene [32]. However, the introduction of the extra
components makes it confusing to judge which component works
in the composites [18]. Hence, it is significant to fast prepare f-
MXenes or even s-MXenes with high yield.

To date, there are still some basic problems to be solved,
including the following challenges: (1) The yields of f-MXenes
(10%-15%) through delamination of m-MXenes are far from
satisfactory. The residues (up to 85% or even higher) are directly
discarded in most previous reports [29], which results in low
utilization of raw MXenes and high price, as well as failure of large-
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scale preparation. It’s an urgent need to improve delamination
yield of f-MXenes and exploit applications of the sediments waste.
(2) In order to avoid re-stacking, delaminated MXenes are usually
dispersed in water due to hydrophilicity. However, it is
accompanied with inevitable degradation because of interaction
between water molecule and the surface groups of MXenes, even
under protection of Ar atmosphere, low-temperature
environment, or polyanion antioxidants [33]. Moreover, these
approaches are high energy consumption or need subsequent
process to remove additives. Fast preparation of delaminated
MZXenes into powders state, which can be stored in a water and
oxygen free environment, is a radical solution to the degradation
and oxidation problems. However, it is still faced with great
challenge to quickly prepare f-MXenes powders via freeze-drying
process because of the easy re-stacking problems, together with
excessive content of dispersant water. (3) MXenes films have been
used in various applications [34,35]. However, the general
vacuum filtration of MXenes films is quite time-consuming due to
re-stacking of delaminated MXenes nanosheets under vacuum
force. It takes 5-10 h to filter per film with thickness about 30 um.
Therefore, how to improve the preparing efficiency of flexible
MXenes films is also of big challenge [34-36].

As a result, we can put forward the following meaningful
questions: (1) How to completely solve the oxidation problem of
MXenes during storage in a simple way? (2) How to improve the
delamination efficiency of m-MXenes and the yield of f-MXenes
or even s-MXenes nanosheets? (3) How to realize fast preparation
of f-MXenes or s-MXenes nanosheets powders and self-
supporting MXenes films? (4) How to rationally use the sediments
residues after collecting the supernatant, rather than directly
discard them? These fundamental issues are the main bottlenecks
and of great significance for the in-depth development of MXenes
family. Therefore, the new guidelines for systematic preparation of
MXenes-derived materials by simple and scalable process are
highly desired.

Aimed at the above problems, we propose the guidelines of
classified preparation, involving key points of step-by-step
delamination ~ (SBSD)  strategy, modified solution-phase
flocculation (MSPF) method, and alkali-heat treatment (AHT)
toward final MXenes sediments. Remarkably, we achieve in fast
preparation of f-Ti;C,T, nanosheets powders with yield of 72%,
self-supporting flexible f-Ti,C,T, films within ~ 5 min. All the
samples can be stored in dry inert environment, leading to
thorough avoid of oxidation degradation of MXenes. Besides,
100% utilization of MXenes sediments and raw m-MXenes can be
achieved by transforming the final MXenes sediments residues
into useful MXenes-derived nanowires, which can be various
alkali metal titanate, depending on the condition of AHT process.
According to published literatures [37,38], MXenes derivatives
prepared in this paper have broad application prospects, which are
determined by their superior microstructure and fundamental
properties. Furthermore, products in this paper can be prepared
on a large scale based on the simple preparation methods. More
importantly, in this work, we mainly focus on the MXenes
sediments wastes, which are usually directly discarded after
ultrasonic exfoliation process. Alkali-heat treatment can turn trash
of MXenes sediments into treasure of MXenes-derived nanowires.

2 Experimental sections

Classified preparation and hierarchical 100% utilization of raw
MXenes, taking Ti,C,T, MXene as an example.

2.1 Preparation of m-Ti,C,T, MXenes powders
Gray Ti;AlC, powders (98%, 200 mesh) were purchased from
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. The accordion-like m-
Ti;C,T, powders were prepared according to previous reported
hydrofluoric acid (HF) etching methods [39, 40].

2.2 Preparation of f-Ti;C,T,
powders, Ti;C, T, films

or s-Ti;G,T, MXenes

2.2.1 Step-by-step delamination strategy

In order to avoid formation of fragments and increase yields of
delaminated MXenes nanosheets, SBSD strategy was proposed,
which means the traditional sediments can be continuously
delaminated after collection of supernatants (Fig. S2 in the ESM),
until supernatant becomes nearly transparent. In detail, 1 g
accordion-like m-Ti;C,T, was immersed in 10 mL
tetramethylammonium hydroxide (TMAOH, 25% water solution)
with continuous stirring for 24 h. Then, the Ti;C,T, solution was
centrifugated and washed with deionized (DI) water. Before
ultrasonic treatment, the Ti;C, T, was soaked in DI water for 24 h.
After ultrasonic treatment for 1 h, the delaminated Ti,C,T,
supernatant can be collected via centrifugation (3,500 rpm, 30
min) according to previous research experience [39,41]. The
initial Ti;C,T, MXenes sediments can be further delaminated by
SBSD strategy until nearly transparent supernatant, keeping the
same process as the first time, including ultrasonic treatment and
centrifugation collection.

2.2.2  Solution-phase flocculation (SPF) method

5 mL 1 M ammonium salts such as NH,HCO; were added into
100 mL delaminated MXenes solution with continuous stirring.
After resting for 24 h at refrigeration (5 °C), there was an obvious
flocculation phenomenon. Most of the water can be removed at
flocculation process. The fast preparation of Ti;C,T, powders via
freeze-drying and Ti;C,T, films via vacuum-assisted filtration can
be achieved, followed by subsequent annealing (Ar, 6 h, 120 °C) to
remove ammonium ion based on the decomposition temperature
of NH,HCO; (60 °C). Similar flocculation phenomenon can also
be observed if ammonium salts were replaced by hydrochloric
acid, proving the feasibility of ammonium salts or hydrochloric
acid in playing the role of flocculants. The proposed MSPF
method can further accelerate the process of flocculation and
remove water with assistance of appropriate low speed
centrifugation (2,000 rpm, 5 min).

2.3 Preparation of Ti;C,T, MXenes sediments derived
nanowires

After several times exfoliation, the final tile-like sediments
intrinsically belong to m-Ti,C,T, that cannot be further easily
delaminated. These sediments are usually directly discarded. In
order to achieve 100% utilization of accordion-like raw m-Ti,C,T,,
the 0.5 g tile-like Ti;C, T, MXenes sediments were alkalized in 5 M
50 mL KOH aqueous solution with AHT at 50 °C for 6 days,
marked as KTO-6. To study the transformation process, a series of
Ti;C,T, sediments derived nanowires were prepared by adjusting
alkalization time, such as KTO-2 (alkalization for 2 days), KTO-0
(fresh MXenes sediments). The content of 1D nanowires in the
hybrids can be adjusted by controlling alkalization time.

24 Materials characterization

X-ray diffraction (XRD) measurements were carried out by
Rigaku MiniFlex 600 (Cu Ko« radiation). X-ray photoelectron
spectroscopy (XPS) measurements were analyzed by Thermo
Fisher 250XI. The morphology and microstructure of MXenes
derivates, including powders, films, and nanowires, were
characterized by scanning electron microscopy (SEM, Hitachi SU-
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8010) and transmission electron microscopy (TEM, JEM-2100).
Brunauer-Emmett-Teller ~(BET) surface area and N,
adsorption—desorption isotherm curve were employed by
Micromeritics ASAP 2020 Plus HDSS.

2.5 Abbreviations

In this paper and associated supporting information, multi-layered
is abbreviated as m-; few-layered is abbreviated as f-; single-layered
is abbreviated as s-; step-by-step delamination is abbreviated as
SBSD; solution-phase flocculation is abbreviated as SPF; modified
solution-phase flocculation is abbreviated as MSPF; alkali-heat
treatment is abbreviated as AHT, and reaction time of day is
abbreviated as d.

3 Results and discussion

The overall preparation processes of delaminated MXenes
powders, flexible films, and MXenes-derived nanowires are
provided in Fig. 1 and Fig. S2 in the ESM, taking Ti,C,T, MXene
as an example. After etching and pre-intercalated by various
agents such as tetramethylammonium hydroxide (TMAOH), the
accordion-like m-MXenes can be exfoliated into f-MXenes or
even s-MXenes. In order to improve delamination efficiency and
avoid formation of MXenes fragments owing to excessive
ultrasonic delamination, it is necessary to adopt SBSD strategy.
Briefly, the delaminated f-Ti;C,T, nanosheets supernatant is
collected in time to avoid generation of fragments under excessive
sonication (Fig. S3 in the ESM), and the traditional sediments are
proceeded with ultrasonic delamination after adding dispersant
water. Repeating ultrasonic treatment and supernatant collection
until the color of the supernatant is nearly clear, implying there is
no further exfoliated f-Ti;C,T, from residuals. SBSD strategy can
greatly increase the yield of the f-Ti,C,T, (72%) nanosheets, and
final sediments can be reduced to 28% from traditional 85% in
weight percent.

The fresh Ti;C,T, MXenes supernatant colloids are stable due
to electrostatic repulsion between negatively charged MXenes
nanosheets, endowed by the presence of the surface functional
groups (-OH, -F, and -O) [42-44]. SPF phenomenon occurs
once the electrostatic equilibrium is broken with addition of
cations (Fig. S4 in the ESM) [45]. Considering the subsequent
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Figure1 Schematic illustration of classified preparation and hierarchical 100%
utilization of multi-layered MXenes, taking Ti;C,T, MXene as an example. In
short, after delamination, the collected Ti;C,T, supernatant can be fast prepared
into few-layered or even single-layered Ti,C,T, powders, flexible films. Ti,C,T,
sediments can be alkalized into nanowires, leading to 100% utilization of raw
multi-layered MXenes.
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simple volatilization removability, diluted hydrochloric acid and
ammonium salt solution can be selected as flocculants in this
work. Upon addition of flocculant, cations were attracted to the
surface of fTi;C,T,, leading to destruction of electrostatic
repulsion equilibrium state, and eventually complete electrostatic
flocculation. After removing most of the water via flocculation
process, the fast preparation of MXenes powders and MXenes
films can be achieved via freeze-drying and vacuum-assisted
filtration, respectively. The processes of flocculation can be further
accelerated through MSPF with assistance of appropriate low
speed centrifugation. In addition, for the hierarchical utilization of
the raw MXenes, a mass of final sediments (28%) collected after
MXenes delamination is selected as starting material to prepare
MXenes-derived nanofibers through subsequent AHT. The
composition of the nanofibers can be varied from potassium
titanate (K,TigO;;, KTO) to sodium titanate (NTO) [46],
depending on the condition of the process. By controlling the
reaction time, 1D nanowires/2D nanosheet heterostructure with
controllable nanofiber content can be obtained. If further prolong
reaction time, final MXenes sediments can be completely
converted into MXenes-derived nanofibers.

XRD results (Fig.2(a)) show that Al layers are completely
removed after HF etching which can be demonstrated by the
disappearance of peak at 39° and the overall left shift of the
remaining peaks (Fig. 2(b)), indicating the successful preparation
of m-Ti;C,T, MXenes [39]. After treated in TMAOH, the XRD
patterns of prepared f-Ti;C,T, powders, films, and final sediments
are basically the same, indicating the “pillaring” and ultrasonic
delamination process will not destroy the phase structure
(Figs. 2(a) and 2(b)). After TMAOH intercalation, the (002) peak
position shows obvious movement toward left compared with m-
Ti,C,T,, indicating larger TMA® ion groups are intercalated
between the layers, leading to an enlargement of interlayer
spacing. After alkalization treatment, interlayered TMA® is
replaced by small K* or Na* via ion exchange, which is consistent
with the right shift of (002) peak, indicating contraction of the
interlayer spacing (Fig. 2(b)). Although the alkalized sample from
final sediments exhibits basically the same XRD pattern as above-
mentioned samples, some chemical changes occur during the
AHT process. The (002) peak of Ti;C,T, is so strong that some
useful signals are obscured. For this reason, the XRD results were
re-displayed in different ranges. As shown in Fig.2(c), new
diffraction peaks can be observed after AHT process of 2 days.
Moreover, the diffraction peaks of Ti;C,T, still exist in the sample.
Hence, a possible reaction mechanism during AHT process is that:
AHT will activate a gentle chemical reaction of Ti;C,T,, leading to
formation of heterostructure composed of Ti;C,T, and new
components. The reaction during AHT process deserves further
exploration and will be in-depth discussed in the following
sections.

Compared with compact Ti;AlC, MAX phases (Fig. S5 in the
ESM), m-Ti;C, T, shows a typical loose accordion-like
morphology (Fig.3(a) and Figs. S6(a)-S6(c) in the ESM),
consistent with previous reports [47]. Impressively, the {-Ti;C,T,
nanosheets without any re-stacking issues can be obtained via SPF
method and subsequent annealing process to remove the
introduced ammonium ion or hydrogen ion, as well as terminated
—-OH groups (Egs. (1) and (2)). The f-MXenes and s-MXenes
nanosheet powders can be characterized from the minimum
magnification of 400 times under SEM (Figs. 3(b)-3(f) and Figs.
S6(d)-S6(f) in the ESM), and obvious few-layered nanosheets can
be observed without re-stacking phenomenon in all randomly
selected area. It is well known that delaminated MXenes
supernatant can be inevitably oxidized in oxygen atmosphere and
dispersant water [18]. SPF method enables convenient and rapid
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Figure3 Morphology images for m-MXenes derivatives. (a) Accordion-like multi-layered Ti;C,T, MXenes. (b)-(d) Few-layered Ti;C,T, powders. (e) Single-layered
Ti,C,T, on AAO films. (f) TEM image of single-layered Ti;C,T,. (g)—(h) Cross-section images of Ti,C,T, films based on SPF method, and the inset in the lower left
corner of (g) is photograph picture of Ti;C,T, films and higher right corner of (g) is top-view image of Ti,C,T, films. (i) Tile-like Ti;C,T, MXenes sediments after
delamination. (j) Heterostructure derived from Ti;C,T, sediments after alkali-heat treatment for 6 days. (k)-(I) Overall morphology of the heterostructure and
corresponding SEM-EDS element mappings.
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preparation of f-MXenes and s-MXenes powders, which can be
stored in water and oxygen free environment. Consequently, the
SPF method is of great significance for the development of
MXenes, which not only fundamentally solves the re-stacking
problem of delaminated MXenes, but also avoids their oxidation
during storage.

[NH;] [OH | = NH, 4+ H,0 (1)

[H'] [OH"] = H,0 )

There are already a lot of previous reports about flexible self-
supporting MXenes-based films, prepared via vacuum-assisted
filtration process [34-36]. However, due to serious re-stacking of
delaminated f-MXenes nanosheets, the filtration process is very
time-consuming. The restacked MXenes nanosheets severely
restrict the passage of water flow, resulting in very low production
efficiency for a dedicated vacuum pump. Since the SPF method
can effectively solve the re-stacking problem of f-MXenes and
generate unimpeded channel for water flow, the flocculation
mixture can be fast filtrated to prepare free-standing MXenes
films. Porous structure can be clearly observed from the cross-
sectional view of the films (Figs. 3(g) and 3(h)), showing porous
multi-channel structure compared with densely stacked and
aggregated MXenes nanosheets prepared by the conventional
method [10,48,49]. After solution-phase flocculation, MXenes
films can be produced within 5 min by filtration, which is only
1/60 to 1/120 of the time compared with the conventional method
(5-10 h). The production efficiency can be further significantly
improved in the preparation of multiple films, strongly
demonstrating the effectiveness of the SPF method in preparing
free-standing MXenes films.

The final sediments, collected after centrifugation, show
obvious tile-like morphology (Fig. 3(i) and Figs. S6(g)-S6(i) in the
ESM). These sediments are essentially un-exfoliated Ti;C,T,
MXenes based on the XRD results (Fig.2(a)). After alkali-heat
treatment for 6 d in KOH aqueous solution, it generates
interconnected nanowires framework closely adhered to the tile-
like substrate. The heterostructure can be clearly observed through
SEM image as shown in Fig.3(j), in which the nanowire
framework and the bulk substrate can be roughly divided by the
tagged line. The elemental mapping characterization reveals the
even distribution of Ti, C, O, and K elements in the sample,
implying the composition change after AHT process (Figs. 3(k)
and 3(I) and Fig. S7 in the ESM). Furthermore, the SEM-energy
dispersive spectrometer (SEM-EDS) shows there are 35.45 wt.% Ti
and 1321 wt% C in the sample (Table S1 in the ESM),
corresponding to a Ti:C molar ratio about 0.67. The discrepancy
compared to the stoichiometric ratio of Ti;C, indicates it probably
forms new chemicals after alkali-heat treatment. Therefore, the
AHT product consists of two parts, including 2D m-MXenes
subgrade and 1D nanowire attachment, which indicates the
alkalized sediments are heterostructure and chemical reactions
occur during AHT. As far as we know, the AHT-induced
preparation of nanowires based on the sediments has not been
reported. Therefore, it is necessary to design experiment to
systematically analyze the composition of MXenes-derived
nanowires.

As we know, the chemical reaction product is determined by
the chemical components of reactant and reaction condition,
regardless of morphology (Fig.4), which can only affect reaction
kinetic. Hence, in order to assure the complete transformation of
the reactant, the Ti;C,T, sediments were replaced by f-Ti;C,T, to
obtain final alkalized samples. After the same alkali-heat treatment
for 3 d, it was found that the colors of the f-Ti;C,T, and sediment

Nano Res. 2022, 15(3): 27462755

suspensions are quite different (ochre for {-Ti;C,T, and red-brown
for sediments), as well as the XRD result of these two samples (Fig.
S8 in the ESM and Figs. 5(a) and 5(b)). The XRD pattern of the
product derived from f-Ti;C,T, after AHT for 3 d well matches
with the PDF card of K,TigO,;, (KTO) (PDEF: #84-2057), and no
(002) peak corresponding to Ti;C,T, is observed, indicating the
full reaction of the reactant. Impressively, when the alkalization-
heat reaction time is extended to 10 days, ochre solution can also
be observed for Ti;C,T, sediments, of which the XRD pattern also
coincides well with the standard peak of K,TisO;, (Fig. 5(a)).
Therefore, it can be affirmed that the final nanowires synthesized
under such AHT condition are potassium titanate (K, TizO,;), and
£-Ti,C, T, shows better chemical reaction kinetics compared with
Ti;C, T, sediments. Besides, final Ti;C,T, sediments can also be
alkalized to form sodium titanate when NaOH was used in AHT
process (Fig. S9 in the ESM).

In order to explore the reaction mechanism, a series of contrast
experiments were carried out based on different AHT time. We
denote alkalized sediments as KTO-0, KTO-2, KTO-4, KTO-6,
KTO-8, KTO-10 to describe fresh Ti,C,T, sediments and alkalized
sediments in KOH solution for 2, 4, 6, 8, and 10 days, respectively.
According to the ex-situ SEM images, with the AHT time
increasing, nanowires grow continuously until no residues of
MXenes substrate, indicating a surface reaction process
(Figs. 4(a)-4(f)). The evolution process of the morphology can be
vividly depicted by the schematic in Fig. 4(g). More detailed
morphology and structure information of the AHT product was
collected through TEM test. As shown in Fig 4(h), due to
influence of water molecules, external MXenes can be gradually
oxidized and degraded as titanium dioxide, leading to an
intermediate layer composed of nanoparticles, which can further
self-assemble into short nanowires of potassium titanate. With the
extension of AHT process, all of nanoparticles were self-
assembled, converted into longer 3D intertwined nanowires of
K,TigO,;, demonstrating the evolution from bulk to nanoparticle
and further to nanofiber during AHT process. The formation of
nanoparticles accounts for the surface roughness in initial AHT
product as shown in Fig. 4(b). After AHT for 10 days, the bulk
completely converts to interwoven KTO nanofibers (Fig. 4(i) and
Fig.S10 in the ESM). As shown in Figs. 4(i) and 4(j), the
polycrystalline KTO nanofiber exhibits lamellar structure with a
high interlamellar spacing of 0.84 nm, and lattice spacing of 0.22
nm corresponds to (404) crystal plane of K,TiO,,, consistent with
the XRD result.

As shown in Fig. 5(b) and Fig. S11 in the ESM, ex-situ XRD
results can directly reflect the evolution of chemical compositions
during the process. In the early stage of alkalization, the Ti;C,T,
sediments transform to titanium oxide intermedium under alkali
thermal  oxidation. Afterwards, the diffraction peaks
corresponding to the intermedium decay continuously, implying
further transformation from intermedium to final product (Fig.
S11(c) in the ESM). Owing to relatively low content and
crystallinity, the diffraction signal of KTO can be observed until
reaction time reaches up to 6 d (KTO-6). As reaction time goes
on, the characteristic (002) peak of MXenes attenuates
continuously, while the characteristic peaks of KTO constantly
intensify, which is highly consistent with ex-situ SEM images
(Figs. 4(a)-4(f)). In addition, the BET specific surface areas (SSA)
of the products increase as the alkalization reaction progresses
(Fig. 5(c) and Fig. S12 in the ESM), corresponding to the increase
of nanowires content, which can be reflected in ex-situ SEM
images (Figs. 4(a)-4(f)). The high SSA promises excellent
properties of the final KTO nanowires in various applications [50].
Figure 5(d) and Fig. S13 in the ESM show the Raman spectrum of
fresh Ti,C,T, sediment, alkalized KTO-6, and KTO-10. In the
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Figure4 Morphology evolution of the Ti;C,T, sediments with different alkalization time. (a)-(f) SEM images of the samples. (g) Schematic illustration
transformation of Ti;C,T, sediments during alkalization process. (h) TEM image of KTO-6. (i) TEM image of KTO-10 and inset is SAED patterns. (j) High resolution

TEM (HR-TEM) image of KTO-10.

range of low shift, four peaks of Ti;C,T, sediment located at 150,
260, 401, and 598 cm™ correspond to vibration modes of non-
stoichiometric Ti-C after etching and exfoliation process [51, 52].
Obviously different from fresh Ti,C,T, sediment, there are several
newly characteristic peaks assigned to Ti-O-K vibrations (438
and 650 cm™), Ti—O-Ti stretching vibration (280 cm™), and Ti-O
stretching vibration (196, 836, and 915 cm™) in the results of KTO-
6 [53], nearly the same as that of KTO-10, except that Ti—C can be
maintained at 142 cm™ of KTO-6 while completely disappeared at
KTO-10, indicating thorough transformation from Ti;,C,T, to
KTO. C signals of two peaks (D peak at ~ 1,356 cm™ and G peak
at ~ 1,570 cm™) were also evolved with AHT process, the Ip/I;
diminished gradually. There is no signal of CO; in the final
solution of KTO (Fig.S14 in the ESM), suggesting that C in
Ti;C, T, may be evaporated as carbon dioxide during AHT process
[54].

To investigate chemical bonding of MXenes during
transformation reaction, XPS measurements were performed
(Figs. 5(e)-5(h)). As clearly exhibited in the full spectra and K 2p
spectra of the fresh MXenes sediments KTO-0, KTO-6, and KTO-
10, the K signals appear and F peak almost disappears after
alkalization process, indicating the chemical changes during AHT
process. The follow-up study of high-resolution spectra can
convincingly demonstrate the formation of new chemicals. There
are only Ti-C and C-C bonds detected in the C 1s spectrum of
fresh Ti;C,T, sediments (Fig. 5(g)), nevertheless, the Ti-C bond
significantly weakens, while C-O and C=O chemical bonds arise

after AHT for 6 days, indicating the oxidative damage of MXenes
structure. The Ti-C chemical bond disappears after AHT for 10 d,
indicating the thorough transformation of Ti;C,T, sediments to
KTO nanowires. The transformation from Ti;C,T, sediments to
1D/2D heterostructure and final KTO nanowires can also be
concluded from the evolution of Ti 2p spectra, where Ti-C peak
fades gradually until disappears while Ti-O peak enhances with
the reaction time increasing (Fig. 5(f)). In addition, the evolution
of O 1s peak further confirms the oxidation of the Ti;C,T,
sediments (Fig. S15 in the ESM). Therefore, the final product can
be attributed to compounds of K, Ti, and O, which is consistent
with the XRD results. As previously reported, the Ti-C bonds of
Ti,C,T, in hot aqueous alkali will be destroyed by interaction of
water molecules and terminated functional groups [54, 55], and
the formed titanium oxide particles on surface can further react
with alkali solution to form alkali titanate nanowires [56,57].
Hence, it is speculated that the entire reaction process includes
two steps: First, Ti;C,T, is gradually oxidized to titanium dioxide
nanoparticles, and then titanium dioxide is converted into final
KTO nanowires.

The f-Ti;C,T, powders and flexible self-supporting {-Ti;C,T,
films have been widely used in various fields with outstanding
performance [58], together with extensive reviews up to date (Fig.
S1 in the ESM) [34-36], demonstrating their application potential
[24,59]. In contrast, there are only a handful studies about
MXenes-derived nanofibers. Nevertheless, the vast application of
these nanofibers has emerged [60-62]. In composition, the
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Figure5 (a) XRD patterns of alkalized samples. (b) Ex-situ XRD patterns of alkalized Ti;C,T, sediments with different alkalization time. (c) N,
adsorption—desorption isotherm curve. (d) Raman spectra. (e) XPS study of full spectra. (f) Ti 2p, (g) C 1s, and (h) K 2p spectra of the related derivates.

MXenes-derived nanowire can be alkali metal titanate and
MXenes themselves, depending on the condition of the
alkalization process (oxidation for alkali metal titanate and inert
environment for MXenes themselves) [56,63-65]. It should be
noted that MXenes can be oxidized and degraded as TiO, in the
presence of dissolved oxygen or H,O [18]. As a result, most of the
derived nanofibers are different alkali metal titanates nanowires,
except for inert environment protection [63]. Alkali metal titanates
are also closely related to detailed alkali solutions of NaOH or
KOH, (NaOH for NTO and KOH for KTO) [46, 65]. The various
MXenes-derived nanowires that have been currently reported are
summarized in Table S2 in the ESM. For example, sodium titanate
of Na;Ti;O;,-MXene hybrid can be obtained after NaOH
oxidation process with appropriate time, effectively preventing Na
dendrites and resulting in stable cycling performance [56].
Sandwich-like Nay,;TiO, nanobelt/Ti;C, MXenes composites can
be directly used as anodes for lithium/sodium-ion batteries,
displaying superior cycling stability and rate performance [53].
Complete Ti;C,T,-derived potassium titanate of K,TisOy;
nanowires can be obtained after KOH alkalization, delivering a
higher capacity of 145 mAh-g’ in potassium ion micro-
supercapacitors [65].

Importantly, alkalization of MXenes results in the formation of
unique 3D architecture heterostructure composed of 1D
nanowires and 2D nanosheets. The heterostructure shows salient
advantages when applied in energy storage fields [66-68],
including the fact that 1D nanowires enable short ion diffusion
path and accommodate volumetric strain while 2D MXenes
nanosheets endow high conductivity and fast interfacial electron

transfer. Moreover, 3D interconnected architecture with adequate
space can promote electrolyte penetration, ion transport, and
avoid aggregation of active materials. As result, Ti;C,T,-derived
nanowires of sodium/potassium titanate are attractive for Na/K
storage owing to their unique preparation-structure—function
relationships [56,65]. In this work, we found that usually
discarded Ti;C,T, sediments can be alkalized as nanowires,
achieving 100% hierarchical utilization of accordion-like m-
Ti;C,T, (as shown in Fig.1 and Fig. S2 in the ESM). We believe
this work can accelerate the industrialization application of
MXenes [69, 70].

4 Conclusions

In summary, focusing on basic preparation of various Ti;C,T,
MZXenes derivatives and utilization of discarded Ti,C,T,
sediments, we realize the classified, rapid, and large-scale
preparation of various Ti;C,T, derivatives with 100% utilization of
raw MXenes. Remarkably, the yield of the f-Ti;C,T, nanosheets
can be improved up to 72% by stepwise delamination towards
traditional Ti,C,T, sediments, without formation of fragment
which is common in traditional excessive ultrasonic exfoliation.
Furthermore, solution-phase flocculation was applied via addition
of diluted hydrochloric acid or ammonium salts to thoroughly
solve the re-stacking phenomenon of f-Ti,C,T, MXenes, leading
to fast preparation of f-Ti,C, T, powders and self-supporting films.
More importantly, the final Ti;C,T, sediments, which are directly
discarded in previous works, can be re-utilized by transforming
into Ti;C,T,-derived nanowires through AHT. It is found that the
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AHT-induced surface evolution will generate MXenes-derived
1D/2D nanowire/nanosheet heterostructure, and finally form pure
nanowires after sufficient AHT time. 100% utilization of raw m-
MXenes can be achieved based on the proposed guidelines of
classified preparation and hierarchical exploitation toward raw m-
MXenes. It is exciting that the key points, including stepwise
delamination, solution-phase flocculation, and alkali-heat
treatment toward final MXenes sediments, can realize the
hierarchical 100% utilization of MXenes, together with
fundamental solutions toward re-stacking, oxidation during
storage, and low yields of f-MXenes. We believe this work can
bring new applications and promote the practical commercial
process of various MXenes.
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